Trackers gives you clean, modular re-implementations of leading multi-object tracking algorithms released under the permissive Apache 2.0 license. You combine them with any detection model you already use.
trackers-2.0.0-promo.mp4
You can install and use trackers in a Python>=3.10 environment. For detailed installation instructions, including installing from source and setting up a local development environment, check out our install page.
pip install trackersinstall from source
By installing trackers from source, you can explore the most recent features and enhancements that have not yet been officially released. Please note that these updates are still in development and may not be as stable as the latest published release.
pip install https://github.com/roboflow/trackers/archive/refs/heads/develop.zipTrackers gives you clean, modular re-implementations of leading multi-object tracking algorithms. The package currently supports SORT and ByteTrack. OC-SORT support is coming soon. For full results, see the benchmarks page.
| Algorithm | Trackers API | MOT17 HOTA | MOT17 IDF1 | MOT17 MOTA | SportsMOT HOTA | SoccerNet HOTA |
|---|---|---|---|---|---|---|
| SORT | SORTTracker |
58.4 | 69.9 | 67.2 | 70.9 | 81.6 |
| ByteTrack | ByteTrackTracker |
60.1 | 73.2 | 74.1 | 73.0 | 84.0 |
| OC-SORT | OCSORTTracker |
— | — | — | — | — |
With a modular design, Trackers lets you combine object detectors from different libraries with the tracker of your choice. Here's how you can use ByteTrack with various detectors. These examples use OpenCV for decoding and display. Replace <SOURCE_VIDEO_PATH> with your input.
import cv2
import supervision as sv
from rfdetr import RFDETRMedium
from trackers import ByteTrack
tracker = ByteTrack()
model = RFDETRMedium()
box_annotator = sv.BoxAnnotator()
label_annotator = sv.LabelAnnotator()
video_capture = cv2.VideoCapture("<SOURCE_VIDEO_PATH>")
if not video_capture.isOpened():
raise RuntimeError("Failed to open video source")
while True:
success, frame_bgr = video_capture.read()
if not success:
break
frame_rgb = cv2.cvtColor(frame_bgr, cv2.COLOR_BGR2RGB)
detections = model.predict(frame_rgb)
detections = tracker.update(detections)
annotated_frame = box_annotator.annotate(frame_bgr, detections)
annotated_frame = label_annotator.annotate(annotated_frame, detections, labels=detections.tracker_id)
cv2.imshow("RF-DETR + ByteTrack", annotated_frame)
if cv2.waitKey(1) & 0xFF == ord("q"):
break
video_capture.release()
cv2.destroyAllWindows()run with Inference
import cv2
import supervision as sv
from inference import get_model
from trackers import ByteTrack
tracker = ByteTrack()
model = get_model(model_id="rfdetr-medium")
box_annotator = sv.BoxAnnotator()
label_annotator = sv.LabelAnnotator()
video_capture = cv2.VideoCapture("<SOURCE_VIDEO_PATH>")
if not video_capture.isOpened():
raise RuntimeError("Failed to open video source")
while True:
success, frame_bgr = video_capture.read()
if not success:
break
frame_rgb = cv2.cvtColor(frame_bgr, cv2.COLOR_BGR2RGB)
result = model.infer(frame_rgb)[0]
detections = sv.Detections.from_inference(result)
detections = tracker.update(detections)
annotated_frame = box_annotator.annotate(frame_bgr, detections)
annotated_frame = label_annotator.annotate(annotated_frame, detections, labels=detections.tracker_id)
cv2.imshow("Inference + ByteTrack", annotated_frame)
if cv2.waitKey(1) & 0xFF == ord("q"):
break
video_capture.release()
cv2.destroyAllWindows()run with Ultralytics
import cv2
import supervision as sv
from ultralytics import YOLO
from trackers import ByteTrack
tracker = ByteTrack()
model = YOLO("yolo26m.pt")
box_annotator = sv.BoxAnnotator()
label_annotator = sv.LabelAnnotator()
video_capture = cv2.VideoCapture("<SOURCE_VIDEO_PATH>")
if not video_capture.isOpened():
raise RuntimeError("Failed to open video source")
while True:
success, frame_bgr = video_capture.read()
if not success:
break
frame_rgb = cv2.cvtColor(frame_bgr, cv2.COLOR_BGR2RGB)
result = model(frame_rgb)[0]
detections = sv.Detections.from_ultralytics(result)
detections = tracker.update(detections)
annotated_frame = box_annotator.annotate(frame_bgr, detections)
annotated_frame = label_annotator.annotate(annotated_frame, detections, labels=detections.tracker_id)
cv2.imshow("Ultralytics + ByteTrack", annotated_frame)
if cv2.waitKey(1) & 0xFF == ord("q"):
break
video_capture.release()
cv2.destroyAllWindows()run with Transformers
import torch
import cv2
import supervision as sv
from trackers import ByteTrack
from transformers import RTDetrImageProcessor, RTDetrV2ForObjectDetection
tracker = ByteTrack()
processor = RTDetrImageProcessor.from_pretrained("PekingU/rtdetr_v2_r18vd")
model = RTDetrV2ForObjectDetection.from_pretrained("PekingU/rtdetr_v2_r18vd")
box_annotator = sv.BoxAnnotator()
label_annotator = sv.LabelAnnotator()
video_capture = cv2.VideoCapture("<SOURCE_VIDEO_PATH>")
if not video_capture.isOpened():
raise RuntimeError("Failed to open video source")
while True:
success, frame_bgr = video_capture.read()
if not success:
break
frame_rgb = cv2.cvtColor(frame_bgr, cv2.COLOR_BGR2RGB)
inputs = processor(images=frame_rgb, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
h, w = frame_bgr.shape[:2]
results = processor.post_process_object_detection(
outputs,
target_sizes=torch.tensor([[h, w]]),
threshold=0.5
)[0]
detections = sv.Detections.from_transformers(
transformers_results=results,
id2label=model.config.id2label
)
detections = tracker.update(detections)
annotated_frame = box_annotator.annotate(frame_bgr, detections)
annotated_frame = label_annotator.annotate(annotated_frame, detections, labels=detections.tracker_id)
cv2.imshow("Transformers + ByteTrack", annotated_frame)
if cv2.waitKey(1) & 0xFF == ord("q"):
break
video_capture.release()
cv2.destroyAllWindows()The code is released under the Apache 2.0 license.
We welcome all contributions—whether it’s reporting issues, suggesting features, or submitting pull requests. Please read our contributor guidelines to learn about our processes and best practices.